Matrix Eigenvalues and Eigenvectors

Larry Caretto Mechanical Engineering 501A Seminar in Engineering Analysis September 13, 2017

California State University Northridge

Review Last Lecture Gauss elimination for solving equations and determining rank (number of linearly independent rows or columns) Solution of Ax = b No solutions unless rank A = rank [A b] Unique if rank A = rank [A b] = number of unknowns (infinite if rank < unknowns) Homogenous equations, Ax = 0: only solution is x = 0 unless Det A = 0 (same as saying Rank A < n)

Uses of Eigenvalues

- In electrical and mechanical networks, provides fundamental frequencies
- Shows coordinate transformations appropriate for physical problems
- Provides way to express network problem as diagonal matrix
- Transformations based on eigenvectors used in some solutions of **Ax** = **b**

California State University Northridge

How Many Eigenvalues? An n x n matrix has k ≤ n distinct eigenvalues

- Algebraic multiplicity of an eigenvalue, M_{λ} , is the number of roots of Det[**A** - **I** λ] = 0 that have the same root, λ
- Geometric multiplicity, m_λ, of eigenvalue is number of linearly independent eigenvectors for this λ

17

 $\text{Multiple Eigenvalue Example} \\
 \mathbf{A} = \begin{bmatrix} 2 & 2 & -6 \\ 2 & -1 & -3 \\ -2 & -1 & 1 \end{bmatrix} \quad \mathbf{A} - \mathbf{I}\lambda = \begin{bmatrix} 2-\lambda & 2 & -6 \\ 2 & -1-\lambda & -3 \\ -2 & -1 & 1-\lambda \end{bmatrix} \\
 \text{Det}(\mathbf{A} - \mathbf{I}\lambda) = (2-\lambda)(-1-\lambda)(1-\lambda) + (2)(-1)(-6) \\
 + (-2)(2)(-3) - (-2)(-1-\lambda)(-6) - (2)(2)(1-\lambda) \\
 - (2-\lambda)(-1)(-3) = -\lambda^3 + 2\lambda^2 + \lambda - 2 + 12 + 12 + 12 \\
 + 12\lambda - 4 + 4\lambda - 6 + 3\lambda = -\lambda^3 + 2\lambda^2 + 20\lambda + 24 = 0 \\
 \hline \text{Morthridge} \qquad 18$

Multiple Eigenvalue Example II	
$Det(\mathbf{A} - \mathbf{I}\lambda) = (\lambda + 2)(\lambda + 2)(\lambda - 6) = 0$	
 Solutions are λ = 6, -2, -2 λ = -2 has algebraic multiplicity of 2 Find eigenvector(s) from (A - Iλ_k)x_(k) = 0 	
$\begin{bmatrix} 2 - \lambda_k & 2 & -6 \\ 2 & -1 - \lambda_k & -3 \\ -2 & -1 & 1 - \lambda_k \end{bmatrix} \begin{bmatrix} x_{(k)1} \\ x_{(k)2} \\ x_{(k)3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \bullet \text{Look at} \\ \lambda_k = -2$	
California State University 19 Northridge 19	

Continue Example for $\lambda_3 = 6$
$\overline{(\mathbf{A} - \mathbf{I}\lambda_3)\mathbf{x}_{(3)}} = \begin{bmatrix} 2-6 & 2 & -6\\ 2 & -1-6 & -3\\ -2 & -1 & 1-6 \end{bmatrix} \begin{bmatrix} x_{(3)1}\\ x_{(3)2}\\ x_{(3)3} \end{bmatrix} = 0 = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$
$\begin{bmatrix} -4 & 2 & -6 \\ 2 & -7 & -3 \\ -2 & -1 & -5 \end{bmatrix} \begin{bmatrix} x_{(3)1} \\ x_{(3)2} \\ x_{(3)3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $ • Apply Gauss elimination to these equations
$\begin{bmatrix} -4 & 2 & -6 \\ 0 & -6 & -6 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{(3)1} \\ x_{(3)2} \\ x_{(3)3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \bullet \begin{array}{l} \text{Pick } \mathbf{x}_{(3)3} \\ =1 = > \\ \mathbf{x}_{(3)2} = -1 \\ \end{array}$

Matrix has full rank it its determinant is not zero

 $Det\begin{bmatrix} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 2 & 0 & 1 \end{bmatrix} = (2)(-1)(-1) - (2)(2)(-2) - (0)(-1)(1) - (3)(0)(-1) = 15$

• Since determinant is not zero, the only solution is $\alpha_1 = \alpha_2 = \alpha_3 = 0$, so eigenvectors are linearly independent Children State Interview 25

Quadratic Forms III

- If D = X⁻¹AX, then XD = XX⁻¹AX = AX and XDX⁻¹ = AXX⁻¹ = A
- Quadratic forms, Q = x^TAx, will have a symmetric A matrix, which will have an orthonormal eigenvalue set: X⁻¹ = X^T
- For Q = $\mathbf{x}^T \mathbf{A} \mathbf{x}$, with $\mathbf{A} = \mathbf{X} \mathbf{D} \mathbf{X}^{-1} = \mathbf{X} \mathbf{D} \mathbf{X}^T$ if X is orthonormal, $\mathbf{X}^{-1} = \mathbf{X}^T$ so Q = $\mathbf{x}^T \mathbf{A} \mathbf{x}$ = $\mathbf{x}^T \mathbf{X} \mathbf{D} \mathbf{X}^T \mathbf{x}$

29

• Define
$$\mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{x} = \mathbf{X}^{-1}\mathbf{x}$$
 so $\mathbf{x} = \mathbf{X}\mathbf{y}$
California State Contents
Northridge

35

California State University Northridge